Course at a Glance

Plan

The Course at a Glance provides a useful visual organization of the AP Physics 2 curricular components, including the following:

- Sequence of units, along with approximate weighting and suggested pacing. Please note, pacing is based on 45-minute class periods, meeting five days each week for a full academic year.
- Progression of topics within each unit.
- Spiraling of the big ideas and science practices across units.

Teach

SCIENCE PRACTICES Science practices spiral throughout the course. 1 Modeling 4 Experimental Methods 2 Mathematical Routines 5 Data Analysis 3 Scientific 6 Argumentation Questioning 7 Making Connections + Indicates 3 or more science pratices for a given topic. The individual topic page will show all the science practices. **BIG IDEAS** Big ideas spiral across topics and units. sys 1-Systems CON 5-Conservation wav 6-Waves FLD 2-Fields PRO 7-Probability INT 3-Force Interactions CHA 4-Change

Assess

Assign the Personal Progress Checks—either as homework or in class—for each unit. Each Personal Progress Check contains formative multiple-choice and free-response questions. The feedback from these checks shows students the areas where they need to focus.

Multiple-choice: ~40 questions Free-response: 2 questions

- Experimental Design
- Paragraph Argument Short Answer

15	-20	Class Periods	12–1	8% AP Ex Weig	cam hting
YS 1 7	2.1	Thermodynamic Systems			
RO H	2.2	Pressure, Thermal Equilibrium, and the Ideal Gas Law			
NT H	2.3	Thermodynamics and Forces			
1T 	2.4	Thermodynamics and Free-Body Diagrams			
NT 6	2.5	Thermodynamics and Contact Forces			
HA 6	2.6	Heat and Energy Transfer			
NO H	2.7	Internal Energy and Energy Transfer			
	2.8	Therm Elastic Conse Mome	odynar c Collis rvation ntum	nics and ions: of	l
DN	2.9	Thermodynamics and Inelastic Collisions: Conservation of Momentum			
YS 4 5	2.10	Therm	al Con	ductivity	,
0N 6 7	2.11	Proba Equili Entrop	bility, T brium, a by	hermal and	

Thermodynamics

Personal Progress Check 2

Multiple-choice: ~60 questions Free-response: 2 questions

- Quantitative/Qualitative Translation
- Short Answer

Magnetism and UNIT **Electromagnetic** 5 Induction ~13-15 Class Periods 10-12% AP Exam Weighting SYS 5.1 Magnetic Systems SYS **5.2 Magnetic Permeability** and Magnetic Dipole Moment FLD 5.3 Vector and Scalar Fields FLD 5.4 Monopole and **Dipole Fields** + FLD 5.5 Magnetic Fields and Forces 1 2 INT 5.6 Magnetic Forces ÷ INT 5.7 Forces Review ÷ СНА 5.8 Magnetic Flux +

Personal Progress Check 3

Multiple-choice: ~75 questions Free-response: 2 questions

- Experimental Design
- Paragraph Argument Short Answer

Personal Progress Check 4

Multiple-choice: ~40 questions Free-response: 2 questions

- Quantitative/Qualitative Translation
- Short Answer

Personal Progress Check 5

Multiple-choice: ~35 questions Free-response: 2 questions • Experimental Design

Paragraph Argument Short Answer

Quantum, Atomic, and Nuclear Physics
~13-15 Class Periods 10-12% AP Exam Weighting
SYS 7.1 Systems and INT Fundamental Forces
CON 7.2 Radioactive Decay
CON 7.3 Energy in Modern Physics (Energy in Redicactive Decay and
$E = mc^2$
SYS 7.4 Mass-Energy CHA Equivalence +
SYS7.5 Properties of Waveswavand Particles+
WAV 7.6 Photoelectric Effect 7
PRO 7.7 Wave Functions and Probability 6

Personal Progress Check 6 Multiple-choice: ~50 questions

Free-response: 2 questions
Experimental Design

Short Answer

Personal Progress Check 7

Multiple-choice: ~55 questions Free-response: 2 questions
Quantitative/Qualitative Translation

- Paragraph Argument Short Answer